skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lundquist, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A recent article in Science by Guess et al. estimated the effect of Facebook's news feed algorithm on exposure to misinformation and political information among Facebook users. However, its reporting and conclusions did not account for a series of temporary emergency changes to Facebook's news feed algorithm in the wake of the 2020 U.S. presidential election that were designed to diminish the spread of voter-fraud misinformation. Here, we demonstrate that these emergency measures systematically reduced the amount of misinformation in the control group of the study, which was using the news feed algorithm. This issue may have led readers to misinterpret the results of the study and to conclude that the Facebook news feed algorithm used outside of the study period mitigates political misinformation as compared to reverse chronological feed. 
    more » « less
  2. Abstract On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production. 
    more » « less
    Free, publicly-accessible full text available December 28, 2025
  3. Abstract Optical emissions associated with Terrestrial Gamma ray Flashes (TGFs) have recently become important subjects in space‐based and ground‐based observations as they can help us understand how TGFs are produced during thunderstorms. In this paper, we present the first time‐resolved leader spectra of the optical component associated with a downward TGF. The TGF was observed by the Telescope Array Surface Detector (TASD) simultaneously with other lightning detectors, including a Lightning Mapping Array (LMA), an INTerFerometer (INTF), a Fast Antenna (FA), and a spectroscopic system. The spectroscopic system recorded leader spectra at 29,900 frames per second (33.44 s time resolution), covering a spectral range from 400 to 900 nm, with 2.1 nm per pixel. The recordings of the leader spectra began 11.7 ms before the kA return stroke and at a height of 2.37 km above the ground. These spectra reveal that optical emissions of singly ionized nitrogen and oxygen occur between 167 s before and 267 s after the TGF detection, while optical emissions of neutrals (H I, 656 nm; N I, 744 nm, and O I, 777 nm) occur right at the moment of the detection. The time‐dependent spectra reveal differences in the optical emissions of lightning leaders with and without downward TGFs. 
    more » « less
    Free, publicly-accessible full text available December 28, 2025
  4. Abstract The modulation of low-energy galactic cosmic rays reflects interplanetary magnetic field variations and can provide useful information on solar activity. An array of ground-surface detectors can reveal the secondary particles, which originate from the interaction of cosmic rays with the atmosphere. In this work, we present an investigation of the low-threshold rate (scaler) time series recorded in 16 yr of operation by the Pierre Auger Observatory surface detectors in Malargüe, Argentina. Through an advanced spectral analysis, we detected highly statistically significant variations in the time series with periods ranging from the decadal to the daily scale. We investigate their origin, revealing a direct connection with solar variability. Thanks to their intrinsic very low noise level, the Auger scalers allow a thorough and detailed investigation of the galactic cosmic-ray flux variations in the heliosphere at different timescales and can, therefore, be considered a new proxy of solar variability. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026
  5. A dedicated search for upward-going air showers at zenith angles exceeding 110° and energies E > 0.1 EeV has been performed using the Fluorescence Detector of the Pierre Auger Observatory. The search is motivated by two “anomalous” radio pulses observed by the ANITA flights I and III that appear inconsistent with the standard model of particle physics. Using simulations of both regular cosmic-ray showers and upward-going events, a selection procedure has been defined to separate potential upward-going candidate events and the corresponding exposure has been calculated in the energy range [0.1–33] EeV. One event has been found in the search period between January 1, 2004, and December 31, 2018, consistent with an expected background of 0.27 ± 0.12 events from misreconstructed cosmic-ray showers. This translates to an upper bound on the integral flux of ( 7.2 ± 0.2 ) × 10 21 cm 2 sr 1 y 1 and ( 3.6 ± 0.2 ) × 10 20 cm 2 sr 1 y 1 for an E 1 and E 2 spectrum, respectively. An upward-going flux of showers normalized to the ANITA observations is shown to predict over 34 events for an E 3 spectrum and over 8.1 events for a conservative E 5 spectrum, in strong disagreement with the interpretation of the anomalous events as upward-going showers. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 27, 2026
  6. We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV ( 1 EeV = 10 18 eV ) using the distributions of the depth of shower maximum X max . The analysis relies on 50 , 000 events recorded by the surface detector of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm. Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to fluorescence measurements at the Observatory. After cross-calibration using the fluorescence detector, this enables the first measurement of the evolution of the mean and the standard deviation of the X max distributions up to 100 EeV. Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier composition with increasing energy can be confirmed and is extended to 100 EeV. (ii) The evolution of the fluctuations of X max toward a heavier and purer composition with increasing energy can be confirmed with high statistics. We report a rather heavy composition and small fluctuations in X max at the highest energies. (iii) We find indications for a characteristic structure beyond a constant change in the mean logarithmic mass, featuring three breaks that are observed in proximity to the ankle, instep, and suppression features in the energy spectrum. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  7. We present measurements of the atmospheric depth of the shower maximum X max , inferred for the first time on an event-by-event level using the surface detector of the Pierre Auger Observatory. Using deep learning, we were able to extend measurements of the X max distributions up to energies of 100 EeV ( 10 20 eV ), not yet revealed by current measurements, providing new insights into the mass composition of cosmic rays at extreme energies. Gaining a 10-fold increase in statistics compared to the fluorescence detector data, we find evidence that the rate of change of the average X max with the logarithm of energy features three breaks at 6.5 ± 0.6 ( stat ) ± 1 ( syst ) EeV , 11 ± 2 ( stat ) ± 1 ( syst ) EeV , and 31 ± 5 ( stat ) ± 3 ( syst ) EeV , in the vicinity to the three prominent features (ankle, instep, suppression) of the cosmic-ray flux. The energy evolution of the mean and standard deviation of the measured X max distributions indicates that the mass composition becomes increasingly heavier and purer, thus being incompatible with a large fraction of light nuclei between 50 and 100 EeV. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  8. Abstract The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected by the Pierre Auger Observatory from 2004 to 2018, during the first phase of operation of the Observatory. The Open Data Portal includes detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then, the Portal has been updated and extended. In 2023, a catalog of the highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community, including professional and citizen scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit, and the technical implementation of the release of data by the largest cosmic-ray detector ever built and anticipates its future developments. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026